Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
ACS Appl Mater Interfaces ; 16(14): 18001-18007, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530237

RESUMEN

Cholesteric liquid crystal polymer network (CLCN) films with a single reflection band have found applications for decoration and anticounterfeiting. The CLCN films with double reflection bands were more suitable for these applications. Herein, they were prepared by using thermochromic cholesteric liquid crystals (CLCs) through a two-step photopolymerization approach. At the first step, due to oxygen inhibition, the CLC monomers near the substrate surface were polymerized at a certain temperature. At the second step, those near the air were polymerized at another temperature. The wavelengths of these two reflection bands of the CLCN film were dominated by the two polymerization temperatures. Based on this approach, patterns with composite colors were prepared, which were suitably applied for decoration. Moreover, a double-layered CLCN film with a broad reflection band was prepared that could potentially be applied for displays.

2.
ACS Appl Mater Interfaces ; 16(12): 15242-15250, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38485216

RESUMEN

A coordination complex, Eu(C12C12dbm)3(phen), with strong emission and a high quantum yield (QY ∼ 51.9%) was synthesized. The EuIII complex, as a fluorescent emitter, was embedded in cholesteric liquid crystal polymer networks (CLCNs). A series of free-standing EuIII-CLCN films were obtained, generating a typical sharp emission band corresponding to the EuIII complex. Tunable handedness of circularly polarized luminescence (CPL) with high |glum| values (up to 0.63) was observed. A series of CPL-active CLCN-coated PET films were also prepared (|glum| values up to 0.63), which can be used for large-area preparations. Moreover, by stacking an emitter-embedded PMMA layer and a CLCN layer, a composite system was built, and a large |glum| value (∼1.42) was achieved. Fluorescence patterns were prepared, and distinct images of CLCN films were recognized under both daylight and UV light. This work not only demonstrated that coordination compounds could be incorporated with CLCN films to prepare CPL-active materials with high |glum| values but also provided a new perspective for emissive CLCN materials used for anticounterfeiting and encryption.

4.
Chin J Cancer Res ; 36(1): 55-65, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38455369

RESUMEN

Objective: Despite cardiotoxicity overlap, the trastuzumab/pertuzumab and anthracycline combination remains crucial due to significant benefits. Pegylated liposomal doxorubicin (PLD), a less cardiotoxic anthracycline, was evaluated for efficacy and cardiac safety when combined with cyclophosphamide and followed by taxanes with trastuzumab/pertuzumab in human epidermal growth factor receptor-2 (HER2)-positive early breast cancer (BC). Methods: In this multicenter, phase II study, patients with confirmed HER2-positive early BC received four cycles of PLD (30-35 mg/m2) and cyclophosphamide (600 mg/m2), followed by four cycles of taxanes (docetaxel, 90-100 mg/m2 or nab-paclitaxel, 260 mg/m2), concomitant with eight cycles of trastuzumab (8 mg/kg loading dose, then 6 mg/kg) and pertuzumab (840 mg loading dose, then 420 mg) every 3 weeks. The primary endpoint was total pathological complete response (tpCR, ypT0/is ypN0). Secondary endpoints included breast pCR (bpCR), objective response rate (ORR), disease control rate, rate of breast-conserving surgery (BCS), and safety (with a focus on cardiotoxicity). Results: Between May 27, 2020 and May 11, 2022, 78 patients were treated with surgery, 42 (53.8%) of whom had BCS. After neoadjuvant therapy, 47 [60.3%, 95% confidence interval (95% CI), 48.5%-71.2%] patients achieved tpCR, and 49 (62.8%) achieved bpCR. ORRs were 76.9% (95% CI, 66.0%-85.7%) and 93.6% (95% CI, 85.7%-97.9%) after 4-cycle and 8-cycle neoadjuvant therapy, respectively. Nine (11.5%) patients experienced asymptomatic left ventricular ejection fraction (LVEF) reductions of ≥10% from baseline, all with a minimum value of >55%. No treatment-related abnormal cardiac function changes were observed in mean N-terminal pro-BNP (NT-proBNP), troponin I, or high-sensitivity troponin. Conclusions: This dual HER2-blockade with sequential polychemotherapy showed promising activity with rapid tumor regression in HER2-positive BC. Importantly, this regimen showed an acceptable safety profile, especially a low risk of cardiac events, suggesting it as an attractive treatment approach with a favorable risk-benefit balance.

5.
Emerg Microbes Infect ; 13(1): 2321994, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38377136

RESUMEN

Vaccines utilizing modified messenger RNA (mRNA) technology have shown robust protective efficacy against SARS-CoV-2 in humans. As the virus continues to evolve in both human and non-human hosts, risk remains that the performance of the vaccines can be compromised by new variants with strong immune escape abilities. Here we present preclinical characterizations of a novel bivalent mRNA vaccine RQ3025 for its safety and effectiveness in animal models. The mRNA sequence of the vaccine is designed to incorporate common mutations on the SARS-CoV-2 spike protein that have been discovered along the evolutionary paths of different variants. Broad-spectrum, high-titer neutralizing antibodies against multiple variants were induced in mice (BALB/c and K18-hACE2), hamsters and rats upon injections of RQ3025, demonstrating advantages over the monovalent mRNA vaccines. Effectiveness in protection against several newly emerged variants is also evident in RQ3025-vaccinated rats. Analysis of splenocytes derived cytokines in BALB/c mice suggested that a Th1-biased cellular immune response was induced by RQ3025. Histological analysis of multiple organs in rats following injection of a high dose of RQ3025 showed no evidence of pathological changes. This study proves the safety and effectiveness of RQ3025 as a broad-spectrum vaccine against SARS-CoV-2 variants in animal models and lays the foundation for its potential clinical application in the future.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Cricetinae , Humanos , Ratones , Ratas , Animales , Vacunas Combinadas , SARS-CoV-2/genética , Vacunas de ARNm , Vacunas contra la COVID-19/genética , COVID-19/prevención & control , Anticuerpos ampliamente neutralizantes , Ratones Endogámicos BALB C , ARN Mensajero/genética
6.
Biol Trace Elem Res ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277120

RESUMEN

Cadmium (Cd) exposure is a persistent pollution problem, necessitating caution in using cadmium-expelling complexing agents. Currently, there is no targeted therapy to treat Cd poisoning. The thyroid gland is a major endocrine organ that directly regulates thyroid hormones involved in various physiological processes and is a target organ for Cd accumulation. Herein, the effects of Cd exposure on swine thyroid glands were investigated. Six-week-old male pigs were randomly divided into the Cd and control groups. The control group was fed a normal diet containing 0 mg Cd/kg, while the Cd group was fed a diet containing 20 mg Cd/kg (CdCl2) for 40 days. The regulation mechanism of phosphatase and tensin homolog (PTEN) microRNA-494-3p (miR-494-3p) was evaluated to determine the toxic effects of Cd exposure on free radicals' cleaner. Notably, heat shock proteins (HSPs) were triggered as defense agents against Cd. Cd exposure increased the enzyme activity of superoxide dismutase1(SOD1) and SOD2, catalase (CAT), and glutathione (GSH), and the endoplasmic reticulum stress in thyroid cells. Histopathological staining, RT-qPCR, and Western Blot assays were further employed to detect possible apoptosis and necroptosis of thyroid cells induced by Cd exposure. The assays revealed increased thyroid inflammatory injury, fibrosis, and apoptosis caused by Cd exposure. This study demonstrates the role of microRNAs in regulating Cd toxicity in pig thyroid tissue and provides evidence of Cd's negative effects. It further provides an assessment of the toxicological impact of Cd as an environmental endocrine disruptor (ED) that threatens public health and safety, which forms a basis for the development of Cd poisoning treatment therapies.

7.
Small ; : e2308383, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38073323

RESUMEN

Acidic residues (Asp and Glu) have a high prevalence on protein surfaces, but cross-linking reactions targeting these residues are limited. Existing methods either require high-concentration coupling reagents or have low structural compatibility. Here a previously reported "plant-and-cast" strategy is extended to develop heterobifunctional cross-linkers. These cross-linkers first react rapidly with Lys sidechains and then react with Asp and Glu sidechains, in a proximity-enhanced fashion. The cross-linking reaction proceeds at neutral pH and room temperature without coupling reagents. The efficiency and robustness of cross-linking using model proteins, ranging from small monomeric proteins to large protein complexes are demonstrated. Importantly, it is shown that this type of cross-linkers are efficient at identifying protein-protein interactions involving acidic domains. The Cross-linking mass spectrometry (XL-MS) study with p53 identified 87 putative binders of the C-terminal domain of p53. Among them, SARNP, ZRAB2, and WBP11 are shown to regulate the expression and alternative splicing of p53 target genes. Thus, these carboxylate-reactive cross-linkers will further expand the power of XL-MS in the analysis of protein structures and protein-protein interactions.

8.
Sci Bull (Beijing) ; 68(24): 3192-3206, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37993332

RESUMEN

The global emergence of SARS-CoV-2 variants has led to increasing breakthrough infections in vaccinated populations, calling for an urgent need to develop more effective and broad-spectrum vaccines to combat COVID-19. Here we report the preclinical development of RQ3013, an mRNA vaccine candidate intended to bring broad protection against SARS-CoV-2 variants of concern (VOCs). RQ3013, which contains pseudouridine-modified mRNAs formulated in lipid nanoparticles, encodes the spike (S) protein harboring a combination of mutations responsible for immune evasion of VOCs. Here we characterized the expressed S immunogen and evaluated the immunogenicity, efficacy, and safety of RQ3013 in various animal models. RQ3013 elicited robust immune responses in mice, hamsters, and nonhuman primates (NHP). It can induce high titers of antibodies with broad cross-neutralizing ability against the wild-type, B.1.1.7, B.1.351, B.1.617.2, and the newly emerging Omicron variants. In mice and NHP, two doses of RQ3013 protected the upper and lower respiratory tract against infection by SARS-CoV-2 and its variants. Furthermore, our safety assessment of RQ3013 in NHP showed no observable adverse effects. These results provide strong support for the evaluation of RQ3013 in clinical trials and suggest that it may be a promising candidate for broad protection against COVID-19 and its variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas de ARNm , Animales , Cricetinae , Ratones , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas de ARNm/inmunología , SARS-CoV-2/genética , Primates , Inmunogenicidad Vacunal , Anticuerpos ampliamente neutralizantes , Anticuerpos Antivirales
9.
ACS Appl Mater Interfaces ; 15(37): 44314-44321, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37674445

RESUMEN

Composite colors have been widely found in nature. Herein, polymer-stabilized cholesteric liquid crystal (PSCLC) films with composite structural colors were prepared through a one-step photopolymerization approach. The CLC mixtures were prepared using a mixture of acrylates and a mixture of two chiral dopants. One of the chiral dopants is polymerizable, and the other one is photoisomerizable. After photopolymerization, the PSCLC films with double Bragg reflection bands were obtained on the surface of a substrate. The competition between the photopolymerization of the acrylates and the photoisomerization of the chiral dopant was proposed to drive the formation of the double reflection bands. Without oxygen inhibition, the polymerization of the acrylates near the substrate surface was carried out. However, due to oxygen inhibition, the polymerization of the acrylates near the air was retarded. Then, the photoisomerization of the chiral dopant was carried out prior to the polymerization of the acrylates. The wavelengths of the double reflection bands were tunable by changing the concentrations of the acrylates and chiral dopants and the polymerization temperature. Colorful patterns with composite structural colors were prepared, which were suitable for decoration and anti-counterfeiting.

10.
Chem Asian J ; 18(19): e202300636, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37606182

RESUMEN

Handedness inversion has been widely studied in supramolecular chemistry and material sciences. Herein, a photoisomerizable chiral dopant was synthesized, which could induce the formation of a cholesteric phase with right-handedness. The Bragg reflection band of the cholesteric liquid crystal (CLC) mixture shifted to the long wavelength with extending 365 nm UV light irradiation time. Based on this photochromic property, a colourful polymer-stabilized CLC (PSCLC) film was prepared using a grayscale mask. A handedness reversible CLC mixture was prepared using a mixture of this chiral dopant and S5011. With extending the UV light irradiation time, the handedness of the CLC mixture changed from right- to left-handedness. A patterned PSCLC film was prepared using this CLC mixture. Complementary images were observed under right- and left-handedness circularly polarized lights. The results shown here not only give us a better understanding the competition between photopolymerization and photoisomerization, but also lay the foundations for decoration and anti-counterfeiting.

11.
ACS Macro Lett ; 12(9): 1193-1200, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37590266

RESUMEN

The stalling development of antibiotics, especially against intrinsically resistant Gram-negative pathogens associated with outer membranes, leads to an emerging antibiotic crisis across the globe. To breathe life into existing drugs, we herein report a hypoxia-responsive nanoparticle (NP) that encapsulates a hydrophobic antibiotic, rifampicin, and a cationic potentiator, polysulfonium. The simultaneous release of antibiotics and potentiators can be promoted and inhibited in response to the severity of bacterial-induced hypoxia, leading to antimicrobial dosing in a precision manner. Under the synergism of polysulfoniums with membrane-disruption capability, the NPs can intensively decrease the antibiotic dose by up to 66-95% in eliminating planktonic Gram-negative P. aeruginosa bacteria and achieve an 8-log reduction of bacteria in mature biofilms at rifampicin MIC. The NP formulation demonstrates that precision dosing of antibiotics and potentiators regulated by hypoxia provides a promising strategy to maximize efficacy and minimize toxicity in treating Gram-negative bacterial infection.


Asunto(s)
Antibacterianos , Nanopartículas , Humanos , Antibacterianos/farmacología , Rifampin , Bacterias Gramnegativas , Farmacorresistencia Microbiana , Hipoxia/tratamiento farmacológico
12.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37453139

RESUMEN

Follicle selection and preovulatory hierarchy of hen ovaries were important stages of follicle development and crucially determining egg-laying performance. The selected follicles with a higher expression level of follicle-stimulating hormone receptor (FSHR) mRNA that facilitates response to FSH, and rapidly develops into preovulatory follicles with distinctive characteristics of granulosa cells (GCs) proliferation and differentiation. Identification of the key genes involved in these developmental events is helpful for elucidation of the molecular mechanism underlying egg-laying traits in chicken and other domestic fowl. Herein, the comparative transcriptomic analysis of ovarian prehierarchical follicles before selection (BSF), follicles at selection stage (ASF), and hierarchical follicles (HF) were implemented in the Jilin Black chicken (JB) and Lohmann Brown layer (LB) with the divergences in their egg-laying performance by RNA-sequencing. The results showed that nine deferentially expressed genes (DEGs), including STMN4, FABP3, ROBO2, RSPO4, and DMRT1 were revealed between follicles BSF and ASF; and seventeen DEGs, such as SLC6A15, SLITRK3, PRKG2 and TMC3 were mined between ASF and HF. These two group DEGs being co-expressed between BSF and ASF, and between ASF and HF were compared and substantiated in the JB and LB layers, respectively. Furthermore, 10 signaling pathways, such as cAMP signaling, PPAR signaling pathway, AMPK(Adenosine 5'-monophosphate (AMP)-activated protein kinase) pathway, and estrogen signaling pathway were also identified. Moreover, the roles of two representative candidates ROBO2 and PRKG2 genes presented as downregulated mRNA expression pattern in the transcriptomic profiles were further verified in vitro. The results demonstrated that downregulation of ROBO2 or PRKG2 significantly increased the expression levels of FSHR mRNA and protein with the boosted expression of CCND1, STAR, and BCL-2, whereas remarkably inhibited the expression of Caspase-3, consequently, brought about the decrease of GC apoptosis in the ovarian follicles, but increase of GC proliferation and differentiation serving as the hallmarks for follicle selection. It indicated that ROBO2 and PRKG2 may play indispensable roles in follicle selection and preovulatory hierarchy of hen ovaries separately. Our findings provided a comparative transcriptomic evidence for clarifying the molecular mechanism of the follicle development underlying egg-laying traits in chicken.


Chicken ovarian follicle development undergoes follicle recruitment, prehierarchy, follicle selection, preovulatory/hierarchy, and finally ovulation. The follicle selection and preovulatory hierarchy play a vital role in egg production of hens. However, underlying the mechanism of the key genes involved in these developmental events remains largely unknown. Herein, to explore the promising genes potentially involved in follicle selection and hierarchical development of hen ovary, a comparative transcriptome analysis of the ovarian follicles before and after selection was performed by using Jilin Black (JB) chicken, an indigenous Chinese breed with a low egg-laying rate and strong broodiness, and which was substantiated by using Lohmann Brown (LB) layer, a commercial egg-laying breed, being characterized by a high rate of egg production. As a result, a total of nine critical differentially expressed genes (DEGs) that co-expressed in the ovarian follicles before selection compared with follicles at selection stage (ASF), and 17 DEGs in the ASF follicles compared with hierarchical follicles that developed shortly after the time of follicle selection were identified in the JB hens as well as in the LB layers, respectively. Moreover, the exact roles of two representative candidates ROBO2 and PRKG2 of the DEGs were further verified in regulation of the follicular granulosa cell proliferation and differentiation which are the major characteristics of follicle selection. And 10 signaling pathways that implicated in follicle selection and hierarchy were also enriched. The objectives aim to provide molecular evidence for underlying the regulatory mechanism of follicle development and egg production in chicken.


Asunto(s)
Pollos , Transcriptoma , Femenino , Animales , Pollos/fisiología , Folículo Ovárico/fisiología , Células de la Granulosa/metabolismo , ARN Mensajero/genética
13.
Animals (Basel) ; 13(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37238120

RESUMEN

It was assumed that dietary inclusion of Lactobacillus reuteri SL001 isolated from the gastric contents of rabbits could act as an alternative to feed antibiotics to improve the growth performance of broiler chickens. We randomly assigned 360 one-day-old AA white-feathered chicks in three treatments: basal diet (control), basal diet plus zinc bacitracin (antibiotic), and basal diet plus L. reuteri SL001 (SL001) treatment. The results showed the total BW gain and average daily gain (ADG) of broilers in SL001 treatment increased significantly (p < 0.05, respectively) compared with the control group from day 0 to 42. Moreover, we observed higher levels of immune globulins in both the SL001 group and the antibiotic group. Total antioxidant capacity and levels of antioxidant factors were also significantly increased (p ≤ 0.05, respectively) in the SL001 treatment group, while the interleukin 6, interleukin 4, creatinine, uric acid, total cholesterol, triglyceride, VLDL, LDL and malondialdehyde were remarkably decreased (p < 0.05, respectively). In the ileum of SL001 treatment broilers, the height of villi and the ratio of villi height to crypt depth were significantly increased (p < 0.05). Meanwhile, the crypt depth reduced (p < 0.01) and the ratio of villi height to crypt depth increased (p < 0.05) in the jejunum compared to the control. The abundance of microbiota increased in the gut of broilers supplemented with SL001. Dietary SL001 significantly increased the relative abundance of Actinobacteria in the cecal contents of broilers (p < 0.01) at the phylum level. In conclusion, L. reuteri SL001 supplementation promotes the growth performance of broiler chickens and exhibits the potential application value in the industry of broiler feeding.

14.
J Chem Inf Model ; 63(8): 2321-2330, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37011147

RESUMEN

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) play important roles in human neurodegenerative disorders such as Alzheimer's disease. In this study, machine learning methods were applied to develop quantitative structure-activity relationship models for the prediction of novel AChE and BChE inhibitors based on data from quantitative high-throughput screening assays. The models were used to virtually screen an in-house collection of ∼360K compounds. The optimal models achieved good performance with area under the receiver operating characteristic curve values ranging from 0.83 ± 0.03 to 0.87 ± 0.01 for the prediction of AChE/BChE inhibition activity and selectivity. Experimental validation showed that the best-performing models increased the assay hit rate by several folds. We identified 88 novel AChE and 126 novel BChE inhibitors, 25% (AChE) and 53% (BChE) of which showed potent inhibitory effects (IC50 < 5 µM). In addition, structure-activity relationship analysis of the BChE inhibitors revealed scaffolds for chemistry design and optimization. In conclusion, machine learning models were shown to efficiently identify potent and selective inhibitors against AChE and BChE and novel structural series for further design and development of potential therapeutics against neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Butirilcolinesterasa , Humanos , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad , Relación Estructura-Actividad Cuantitativa , Simulación del Acoplamiento Molecular
15.
J Affect Disord ; 329: 72-80, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36813043

RESUMEN

BACKGROUND: Desvenlafaxine and duloxetine are selective serotonin and norepinephrine reuptake inhibitors. Their efficacy has not been directly compared using statistical hypotheses. This study evaluated the non-inferiority of desvenlafaxine extended-release (XL) to duloxetine in patients with major depressive disorder (MDD). METHODS: In this study, 420 adult patients with moderate-to-severe MDD were enrolled and randomly assigned (1:1) to receive 50 mg (once daily [QD]) of desvenlafaxine XL (n = 212) or 60 mg QD of duloxetine (n = 208). The primary endpoint was evaluated using a non-inferiority comparison based on the change from baseline to 8 weeks in the 17-item Hamilton Depression Rating Scale (HAMD17) total score. Secondary endpoints and safety were evaluated. RESULTS: Least-squares mean change in HAM-D17 total score from baseline to 8 weeks was -15.3 (95% confidence interval [CI]: -17.73, -12.89) in the desvenlafaxine XL group and - 15.9 (95% CI, -18.44, -13.39) in the duloxetine group. The least-squares mean difference was 0.6 (95% CI: -0.48, 1.69), and the upper boundary of 95% CI was less than the non-inferiority margin (2.2). No significant between-treatment differences were found in most secondary efficacy endpoints. The incidence of the most common treatment-emergent adverse events (TEAEs) was lower for desvenlafaxine XL than for duloxetine for nausea (27.2% versus 48.8%) and dizziness (18.0% versus 28.8%). LIMITATIONS: A short-term non-inferiority study without a placebo arm. CONCLUSIONS: This study demonstrated that desvenlafaxine XL 50 mg QD was non-inferior to duloxetine 60 mg QD in efficacy in patients with MDD. Desvenlafaxine had a lower incidence of TEAEs than duloxetine did.


Asunto(s)
Trastorno Depresivo Mayor , Adulto , Humanos , Clorhidrato de Duloxetina/efectos adversos , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/inducido químicamente , Succinato de Desvenlafaxina/efectos adversos , Antidepresivos/efectos adversos , Método Doble Ciego , Resultado del Tratamiento
16.
Int Immunopharmacol ; 117: 109880, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36842233

RESUMEN

Ketamine is commonly used for sedation, analgesia and anesthetics. Much evidence has shown that it has an immune-regulatory effect. The cholinergic anti-inflammatory pathway mediated by α7nAChR is a prominent target of anti-inflammatory therapy. However, whether ketamine suppresses inflammatory levels in nerve cells by activating α7nAChR remains unknown. Lipopolysaccharide (LPS) was used to establish the neuroinflammation model in PC12 cells in vitro, and α7nAChR siRNA was transfected into PC12 cells 30 min before LPS to inhibit gene expression of α7nAChR. PC12 cells were stimulated with LPS for 24 h, and the indicators were detected at 2 h after GTS-21 and ketamine were added. The results showed that LPS increased the proportion of PC12 cells apoptosis, activated TLR4/MAPK/NF-κB signaling pathway, and increased the expression of interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Ketamine reduced the ratio of early apoptosis and late apoptosis of PC12, inhibited the entry of P65 into the nucleus, decreased the activation of TLR4/MAPK/NF-κB and improved neuroinflammation. However, the ameliorating effects of ketamine on neuronal apoptosis and neuroinflammation were inhibited in the α7nAChRi group. This indicated that α7nAChR played a key role in the anti-inflammatory process of ketamine. Low-dose ketamine inhibited TLR4/MAPK/NF-κB by activating the α7nAChR-mediated cholinergic anti-inflammatory pathway, thereby producing the protective effect on neuronal apoptosis and neuroinflammation.


Asunto(s)
Ketamina , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Ketamina/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Células PC12 , Enfermedades Neuroinflamatorias , Lipopolisacáridos/farmacología , Transducción de Señal , Apoptosis , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
17.
BMJ Open ; 13(1): e065037, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599638

RESUMEN

OBJECTIVE: To examine the relationship between workplace violence (WPV) and professional identity among Chinese psychiatric nurses and the mediating effects of psychological capital (PsyCap) from this association. SETTING: Seven public tertiary psychiatric hospitals in Liaoning Province, China. PARTICIPANTS: A total of 952 psychiatric nurses were recruited for this study. Registered nurses who have been engaged in psychiatric nursing for more than 1 year were eligible as participants in this investigation. OUTCOME MEASURES: Questionnaires consisting of the Workplace Violence Scale, the Occupational Identity Scale, the Psychological Capital Questionnaire and a demographic data sheet were used to collect participant information. We used hierarchical multiple regression and asymptotic and resampling strategies to examine the mediating role of PsyCap in the relationship between WPV and professional identity. RESULTS: WPV was negatively associated with professional identity after controlling for demographic factors (ß=-0.353; p<0.001). PsyCap mediated the relationship between WPV and professional identity, according to the mediation analysis (a×b=-0.150, bias-corrected and accelerated 95% CI (BCa 95% CI) (-0.185 to -0.115); p<0.001). In addition, two dimensions of PsyCap: hope (a×b=-0.075, BCa 95% CI (-0.104 to -0.049); p<0.001) and resilience (a×b=-0.064, BCa 95% CI (-0.090 to -0.039); p<0.001) mediated the association between WPV and professional identity. For professional identity, hope, resilience and PsyCap mediation accounted for 21.6%, 18.1% and 42.4%, respectively. CONCLUSIONS: Based on these findings, PsyCap could partially mediate the relationship between WPV and professional identity. Therefore, hospital administrators should implement measures to prevent and reduce WPV and provide nurses with skills training programmes to improve the PsyCap such as hope and resilience.


Asunto(s)
Enfermeras y Enfermeros , Violencia Laboral , Humanos , Estudios Transversales , Hospitales Psiquiátricos , Pueblos del Este de Asia , Encuestas y Cuestionarios , China , Lugar de Trabajo/psicología
18.
J Cataract Refract Surg ; 49(2): 184-189, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36026702

RESUMEN

PURPOSE: To investigate the differences between dominant and nondominant eyes in femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK) with 50% angle kappa compensation on diopter and visual quality. SETTING: University hospital. DESIGN: Retrospective clinical study. METHODS: 109 patients (218 eyes, 100%) with myopia who underwent FS-LASIK were randomly selected. The preoperative pupil size, center position, and offset between the coaxially sighted corneal light reflex ( P-Dist ) of the patients was recorded. In preoperative and postoperative 6 months, an iTrace wavefront aberrometer was used to measure the corneal, internal optics, and total aberrations. RESULTS: The 6 months postoperatively for corneal coma of the dominant eyes were 0.141 ± 0.055 µm and the nondominant eyes were 0.157 ± 0.033 µm, which was significantly greater than the dominant eyes ( P = .028). The postoperative corneal coma aberration changes were positively correlated with preoperative P-Dist , the dominant eyes ( r = 0.221, P = .023), and the nondominant eyes ( r = 0.251, P = .009). CONCLUSIONS: Adjusting the angle kappa percentage in the nondominant eyes to be higher than that of the dominant eyes in individualized corneal refractive surgery may help find the ablation center closest to the visual axis.


Asunto(s)
Aberración de Frente de Onda Corneal , Queratomileusis por Láser In Situ , Humanos , Agudeza Visual , Estudios Retrospectivos , Coma , Refracción Ocular , Láseres de Excímeros/uso terapéutico
19.
J Virol ; 96(24): e0149222, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36468862

RESUMEN

Bovine viral diarrhea virus (BVDV) is the etiologic agent of bovine viral diarrhea-mucosal disease, one of the most important viral diseases of cattle, leading to numerous losses to the cattle rearing industry worldwide. The pathogenicity of BVDV is extremely complex, and many underlying mechanisms involved in BVDV-host interactions are poorly understood, especially how BVDV utilizes host metabolism pathway for efficient viral replication and spread. In our previous study, using an integrative analysis of transcriptomics and proteomics, we found that DHCR24 (3ß-hydroxysteroid-Δ24 reductase), a key enzyme in regulating cholesterol synthesis, was significantly upregulated at both gene and protein levels in the BVDV-infected bovine cells, indicating that cholesterol is important for BVDV replication. In the present study, the effects of DHCR24-mediated cholesterol synthesis on BVDV replication was explored. Our results showed that overexpression of the DHCR24 effectively promoted cholesterol synthesis, as well as BVDV replication, while acute cholesterol depletion in the bovine cells by treating cells with methyl-ß-cyclodextrin (MßCD) obviously inhibited BVDV replication. In addition, knockdown of DHCR24 (gene silencing with siRNA targeting DHCR24, siDHCR24) or chemical inhibition (treating bovine cells with U18666A, an inhibitor of DHCR24 activity and cholesterol synthesis) significantly suppressed BVDV replication, whereas supplementation with exogenous cholesterol to the siDHCR24-transfected or U18666A-treated bovine cells remarkably restored viral replication. We further confirmed that BVDV nonstructural protein NS5A contributed to the augmentation of DHCR24 expression. Conclusively, augmentation of the DHCR24 induced by BVDV infection plays an important role in BVDV replication via promoting cholesterol production. IMPORTANCE Bovine viral diarrhea virus (BVDV), an important pathogen of cattle, is the causative agent of bovine viral diarrhea-mucosal disease, which causes extensive economic losses in both cow- and beef-rearing industry worldwide. The molecular interactions between BVDV and its host are extremely complex. In our previous study, we found that an essential host factor 3ß-hydroxysteroid-δ24 reductase (DHCR24), a key enzyme involved in cholesterol synthesis, was significantly upregulated at both gene and protein levels in BVDV-infected bovine cells. Here, we experimentally explored the function of the DHCR24-mediated cholesterol synthesis in regulating BVDV replication. We elucidated that the augmentation of the DHCR24 induced by BVDV infection played a significant role in viral replication via promoting cholesterol synthesis. Our data provide evidence that BVDV utilizes a host metabolism pathway to facilitate its replication and spread.


Asunto(s)
Diarrea Mucosa Bovina Viral , Colesterol , Virus de la Diarrea Viral Bovina , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Replicación Viral , Animales , Bovinos , Colesterol/biosíntesis , Virus de la Diarrea Viral Bovina/genética , Virus de la Diarrea Viral Bovina/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Células Cultivadas
20.
Virulence ; 13(1): 1884-1899, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316807

RESUMEN

Bovine viral diarrhoea virus (BVDV) is the etiologic agent of bovine viral diarrhea-mucosal disease, one of the most important viral diseases in cattle, with inflammatory diarrhea, enteritis, and mucosa necrosis as the major clinical manifestations. NF-κB is an important transcription complex that regulates the expression of genes involved in inflammation and immune responses. NLRP3 inflammasome plays a key role in the development of inflammatory diseases. However, whether the activation of NF-κB is crucial for BVDV infection-induced inflammatory responses remains unclear. The results of our present study showed that BVDV infection significantly activated the NF-κB pathway and promoted the expression of NLRP3 inflammasome components (NLRP3, ASC, pro-caspase 1) as well inflammatory cytokine pro-IL-1ß in BVDV-infected bovine cells, resulting in the cleavage of pro-caspase 1 and pro-IL-1ß into active form caspase 1 and IL-1ß. However, the levels of the NLRP3 inflammasome components and inflammatory cytokines were obviously inhibited, as well the cleavage of pro-caspase 1 and pro-IL-1ß in the pre-treated bovine cells with NF-κB-specific inhibitors after BVDV infection. Further, cytopathic biotype BVDV (cpBVDV) Erns and NS5A proteins with their key functional domains contributed to BVDV-induced inflammatory responses via activating the NF-κB pathway were confirmed experimentally. Especially, the NS5A can promote cholesterol synthesis and accelerate its augmentation, further activating the NF-κB signalling pathway. Conclusively, our data elucidate that the activation of NF-κB signaling pathway plays a crucial role in cpBVDV infection-induced inflammatory responses.


Asunto(s)
Virus de la Diarrea Viral Bovina , FN-kappa B , Animales , Bovinos , FN-kappa B/genética , Inflamasomas/metabolismo , Caspasa 1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Virus de la Diarrea Viral Bovina/genética , Citocinas/genética , Citocinas/metabolismo , Diarrea/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...